Стороны треугольника равны 39 см, 65 см и 80 см. Окружность, центр которой принадлежит больше стороне треугольника, касается двух других сторон. На какие отрезки центр этой окружности делит сторону треугольника ? с:
Ответы
Ответ дал:
0
Проведи отрезок из В до О, Точка О лежит на АС. ВО - биссектриса угла В. По свойству биссектрисы получим АВ/ВС = АО/ОС. 39/65 = Х/(80-Х)
65Х=39(80-Х) 65Х+39Х = 39*80 104Х =3120 Х = 3120/104 Х=30, АО=30,
ОС=80-30=50
65Х=39(80-Х) 65Х+39Х = 39*80 104Х =3120 Х = 3120/104 Х=30, АО=30,
ОС=80-30=50
Похожие вопросы
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
10 лет назад