• Предмет: Геометрия
  • Автор: Gratest
  • Вопрос задан 10 лет назад

Уравнение окружности. Правильно ли записал?

 

1) Запишите уравнение окружности, касающейся осей координат и проходящей через точку (8; -4).

 

Получилось (x-8)² + (y+4)² = r²

 

2) Точки A и B симметричны относительно некоторой прямой. Запишите уравнение этой прямой, если A(-2;3)? B(2;1).

 

Получилось x + y + 0 = 0. В чём ошибка? Решал путём вычитания первого уравнения из второго...

 

Ответы

Ответ дал: dtnth
0

Так как окружность касания осей координат, то для координат ее центра и радиуса окружности справделиво равенство|x_0|=|y_0|=R; учитывая, что окружность проходит через точку (8;-4) опускаем модуль (окружность за исключением точек касания находится в IV четверти) x_0=-y_0=R

уравнение окружности имеет вид (x-x_0)^2+(y-y_0)^2=R^2

(8-R)^2+(-4+R)^2=R^2;\ R^2-16R+64+R^2-8R+16=R^2;\ R^2-24R+80=0;\ (R-20)(R-4)=0;

R=20 или R=4

значит существуют две окружности проходящие через точку (8;-4) и касающееся осей координат

(x-20)^2+(y+20)^2=400

и (x-4)^2+(y+4)^2=16

 

вторая задача, пряммая симетричная относительно точек А и В - середнинный перпендикуляр

Ищем координаты середины отрезка АВ,

x=frac{-2+2}{2}=0; y=frac{3+1}{2}=2;

(0;2)

ищем уравнение пряммой АВ в виде y=kx+b

3=-2k+b;

1=2k+b;

 

2=-4k

1=2k+b;

 

k=-0.5

b=2;

 

y=-0.5x+2

перпендикулярные пряммые связаны соотношением угловых коэффициентов

k_1k_2=-1

поєтому угловой коєффициент искомой пряммой равен k=-1/(-0.5)=2

учитывая что искомая пряммая проходит через точку С ищем ее уравнение в виде

y=kx+b (k=2)

2=2*0+b;

b=2

y=2x+2 или y-2x-2=0

 

в чем ошибка у вас - неведомо, ибо вы своего решения не предоставили

Похожие вопросы