Бросают 3 игральные кости. Какова вероятность того, что сумма очков, выпавших на этих костях, будет равна 8?
Ответы
Ответ дал:
0
Всего есть 6^3 = 216 различных вариантов выпадения кубиков (для каждого кубика - по 6, и количества очков, выпадающих на различных кубиках, независимы).
Аккуратно подсчитаем количество вариантов, при реализации которых сумма очков будет равна 8.
Выпишем для каждого благоприятного случая количества очков в порядке возрастания; для каждой такой тройки найдем количество исходов, в которых такие очки могли выпасть - суть число перестановок:
1) 1, 1, 6 (будет 3 различные перестановки: 6 может выпасть на первом, втором или третьем кубиках)
2) 1, 2, 5 (3! = 6 перестановок)
3) 1, 3, 4 (6)
4) 2, 2, 4 (3)
5) 2, 3, 3 (3)
Итого 3 + 6 + 6 + 3 + 3 = 21 благоприятный исход.
Вероятность = число благоприятных исходов / общее число исходов = 21 / 216 = 7 / 72 ~ 9.72%
Аккуратно подсчитаем количество вариантов, при реализации которых сумма очков будет равна 8.
Выпишем для каждого благоприятного случая количества очков в порядке возрастания; для каждой такой тройки найдем количество исходов, в которых такие очки могли выпасть - суть число перестановок:
1) 1, 1, 6 (будет 3 различные перестановки: 6 может выпасть на первом, втором или третьем кубиках)
2) 1, 2, 5 (3! = 6 перестановок)
3) 1, 3, 4 (6)
4) 2, 2, 4 (3)
5) 2, 3, 3 (3)
Итого 3 + 6 + 6 + 3 + 3 = 21 благоприятный исход.
Вероятность = число благоприятных исходов / общее число исходов = 21 / 216 = 7 / 72 ~ 9.72%
Похожие вопросы
2 года назад
9 лет назад
9 лет назад
10 лет назад