• Предмет: Геометрия
  • Автор: skabbibalS
  • Вопрос задан 2 года назад

Найти сторону ( равностороннего ) треугольника вписанного в окружность, радиус которой равен 4√3/2


WARLORD005: Можете, пожалуйста, уточнить: радиус равен 4 корней из (3/2) или (4 корней из 3) / 2 ?

Ответы

Ответ дал: Andr1806
5

Ответ:

Сторона равна 6√2 ед.

Объяснение:

Принимаем такое условие:   "Найти сторону равностороннего треугольника, вписанного в окружность, радиус которой равен 4√(3/2)", так как в противном случае было бы: "Найти сторону равностороннего треугольника, вписанного в окружность, радиус которой равен 2√3.

Решение:

В равностороннем треугольнике центр описанной окружности  лежит на медиане, которая делится этим центром в отношении 2:1, считая от вершины. В равностороннем треугольнике медиана, высота и биссектриса совпадают. Следовательно, радиус описанной окружности нашего треугольника равен 2/3 высоты. Тогда высота равна 4√(3/2):(2/3) = 6√(3/2).

Пусть сторона треугольника равна 2х. По Пифагору:  

(2х)² -х² = (6√(3/2))²  => 3x²= 54  => х = 3√2 ед.

Сторона треугольника равна 6√2 ед.

Проверим формулой для правильного треугольника:  

R = (√3/3)·a  => a = R√3. В нашем случае:

а = 4√(3/2)·√3 = 12/√2 = 6√2 ед.

Похожие вопросы