Докажите, что если диагонали ac и bd произвольного четырёх угольника ABCD взаимно перпендикулярны, то его площадь равна их полупроизведению
Ответы
Ответ дал:
2
Одна диагональ разбивает четырехугольник на 2 треугольника, у которых является основанием, а 2 части другой диагонали являются в этих треугольниках высотами.
Пусть основание будет a, а другая диагональ b. Одна высота будет x, а другая b-xплощади треугольников S1 и S2, а площадь четырехугольника S.
S1= ax/2
S2= a(b-x)/2 =(ab-ax)/2
S = S1+S2 = (ax+ab-ax)/2 = ab/2
Пусть основание будет a, а другая диагональ b. Одна высота будет x, а другая b-xплощади треугольников S1 и S2, а площадь четырехугольника S.
S1= ax/2
S2= a(b-x)/2 =(ab-ax)/2
S = S1+S2 = (ax+ab-ax)/2 = ab/2
Похожие вопросы
1 год назад
1 год назад
7 лет назад
7 лет назад
8 лет назад
8 лет назад