Отрезок AD-биссектриса треугольника ABC.Через точку D проведена прямая,пересекающая сторону AC в точке K,так что DK=AK.
Найдите углы треуголника ADK,если угол BAD=32градуса.
Ответы
Ответ дал:
0
Дано: ΔABC, AD-биссектриса, K ∈ AC, DK=AK, BAD=32°
Найти: ∠AKD, ∠DAK, ∠ADK
Решение: ∠BAD= ∠DAK т.к. AD- биссектриса ⇒
⇒ ∠DAK = ∠ADK т.к. DK=AK углы при основании равны ⇒
∠AKD = 180 °- ( ∠ADK+ ∠DAK)=180 ° - (32 ° + 32°)=180°-64 ° =116°
(сумма всех сторон в треугольнике всегда равна 180°)
Ответ: ∠DAK=32°, ∠ADK= 32°, ∠AKD= 116°.
Похожие вопросы
2 года назад
7 лет назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад