• Предмет: Геометрия
  • Автор: annmamay
  • Вопрос задан 10 лет назад

из прямоугольного треугольника найти длину биссектрисы СМ? СА = 3 корней из 3,противоположный угол А = 15 градусов.

Ответы

Ответ дал: fuflunce
0

если угол C - прямой, а CM - биссектриса, то углы ACM и BCM раны 90/2=45град

Т.к. угол А = 15 град, угол ACM = 45 град, то угол AMC = 180-15-45=120 град

Из треугольника AMC по теореме синусов: AC/sin углаAMC = CM/sin угла CAM

CM = frac{3sqrt{3}sin15}{sin120} = frac{3sqrt{3}sqrt{frac{1-cos30}{2}}}{sin(180-60)} = \ = frac{3sqrt{3}sqrt{frac{1-sqrt{3}/2}{2}}}{sin60} = \ = frac{3sqrt{3}sqrt{frac{2-sqrt{3}}{4}}}{sqrt{3}/{2}} = \ =6sqrt{frac{2-sqrt{3}}{4} =3sqrt{2-sqrt{3}}

Похожие вопросы