• Предмет: Алгебра
  • Автор: Myrhel
  • Вопрос задан 9 лет назад

задайте формулой квадратичную функцию график которой парабола с вершиной в точке (1;11), проходящей через точку (0;10)

Ответы

Ответ дал: elena20092
0

Ответ:

у = -х² + 2х + 10

Объяснение:

Квадратичная функция у = ах² + bx + c   (1)

График её проходит через точку (0; 10)

Подставим координаты этой точки в формулу (1)

10 = а·0 + b · 0 + c   ⇒   c = 10

Вершина параболы находится в точке (1; 11)

Подставим координаты этой точки  в формулу (1)

11 = а + b + 10 ⇒  а + b = 1  (2)

Координата х вершины параболы вычисляется по формуле

х(верш) = -b/(2a)

x (верш) = 1, тогда b = -2a  (3)

Подставим (3) в (2)  а - 2а = 1  ⇒ а = -1

Тогда b = -2 · (-1) = 2

Квадратичная функция получилась такая

у = -х² + 2х + 10

Похожие вопросы