Школьник решил прокатиться в метро одного из городов. Понаблюдав за поездами, он понял, что интервал их движения составляет T=1 мин 40 c, при этом все поезда стоят на станции в течение Δt=30 c. Определите дистанцию между поездом в момент его отправления со станции и позади идущим составом. Длина каждого поезда составляет L=100 м. Ответ выразите в мм, округлив до целых. Под дистанцией подразумевается расстояние между хвостом впереди идущего поезда и головой позади идущего. Известно, что до отправления поезда со станции позади идущий состав успевает разогнаться до постоянной скорости V.
Ответы
Ответ дал:
0
В задаче не сказано, как именно останавливается поезд.
Можно было бы предположить, что поезда останавливаются мгновенно, как в примитивной компьютерной игре, однако, читая последнее предложения, мы понимаем, что рассматривается более-менее реальная ситуация, где поездам нужно время для того, чтобы разгоняться, а значит и останавливаться.
[[ I ]] Если предположить, что в задаче должен быть указан период и время торможения, то тогда в ней должны использоваться два дополнительных параметра:
– время и
– период торможения.
[[ II ]] Если же предположить, что поезда останавливаются с постоянным ускорением
то решение будет содержать этот дополнительный параметр.
Решим задачу для обоих вариантов восстановленного условия:
[[ I ]]
Дано в конкретных з н а ч е н и я х :
Интервал движения
Время посадки высадки
Длина состава
м .
дано п а р а м е т р а м и :
Штатная скорость
;
Время торможения до остановки
;
Тормозной путь
;
Найти: дистанцию между составами
.
Р е ш е н и е :
Все положения, упоминаемые в доказательстве решения, отмечены на приложенном к решению рисунке.
Искомая дистанция между поездами – это свободное пространство вдоль железнодорожного полотна. Таким образом – дистанция в данном случае – это расстояние от ведущего вагона (начала) заднего Скоростного состава (положение С) до Конца припаркованного состава (положение К) в тот момент, когда припаркованный собирается отправляться.
Нам неизвестно, является ли торможение составов перед остановкой равнозамедленным или нет, и нам это знать и не нужно (!), поскольку нам дано и время, и скорость, и тормозной путь. Всё, что нам нужно – это корректно учесть все слагаемые времени и пути при торможении.
Общий интервал движения составляет
и это означает, что каждые
секунд, в положении Н оказывается Начало очередного состава. Уже припаркованный состав простоял на станции
а это означает, что следующему за ним составу осталось проехать из положения С (начало скоростного состава) до точки Н (начало припаркованного состава) в течение
секунд.
Искомая дистанция между составами, как мы уже говорили выше, измеряется не от положения С до положения Н, а от положения С до положения К (конец припаркованного состава). Однако нам будет удобно найти весь остаточный путь СН (между положениями С и Н), а затем вычесть из него длину КН (между положениями К и Н), равную длине состава
м.
Из
секунд, оставшихся идущему следом составу, первые
секунд он будет идти с постоянной скоростью
из положения С в положение О, а последующие
секунд он будет останавливаться из положения О до положения Н.
Длину отрезка ОН – это тормозной путь
. Теперь найдём СО, т.е. длину
Мы знаем, что по отрезку СО состав двигается равномерно со скоростью
в течение времени
значит отрезок СО, т.е. 
Отсюда ясно, что вся длина СН = СО + ОН , т.е.
СН
Как было показано выше искомая дистанция
– это длина СК, равная разности СН и КН, т.е. СН и
.
Итак:
СК
CH 
м
м .
О т в е т [[ I ]] :
дистанция между составами в аналитической форме
;
дистанция между составами с подстановкой известных величин:
м ,
где
– штатаная скорость состава,
– время торможения, и
– тормозной путь.
*** [[ II ]] Решение задачи для второго варианта восстановленного условия во вложенной картинке:
О т в е т [[ II ]] :
дистанция между составами в аналитической форме
;
дистанция между составами с подстановкой известных величин:
м ,
где
– штатаная скорость состава,
и
– модуль ускорения при торможении.
Можно было бы предположить, что поезда останавливаются мгновенно, как в примитивной компьютерной игре, однако, читая последнее предложения, мы понимаем, что рассматривается более-менее реальная ситуация, где поездам нужно время для того, чтобы разгоняться, а значит и останавливаться.
[[ I ]] Если предположить, что в задаче должен быть указан период и время торможения, то тогда в ней должны использоваться два дополнительных параметра:
[[ II ]] Если же предположить, что поезда останавливаются с постоянным ускорением
Решим задачу для обоих вариантов восстановленного условия:
[[ I ]]
Дано в конкретных з н а ч е н и я х :
Интервал движения
Время посадки высадки
Длина состава
дано п а р а м е т р а м и :
Штатная скорость
Время торможения до остановки
Тормозной путь
Найти: дистанцию между составами
Р е ш е н и е :
Все положения, упоминаемые в доказательстве решения, отмечены на приложенном к решению рисунке.
Искомая дистанция между поездами – это свободное пространство вдоль железнодорожного полотна. Таким образом – дистанция в данном случае – это расстояние от ведущего вагона (начала) заднего Скоростного состава (положение С) до Конца припаркованного состава (положение К) в тот момент, когда припаркованный собирается отправляться.
Нам неизвестно, является ли торможение составов перед остановкой равнозамедленным или нет, и нам это знать и не нужно (!), поскольку нам дано и время, и скорость, и тормозной путь. Всё, что нам нужно – это корректно учесть все слагаемые времени и пути при торможении.
Общий интервал движения составляет
Искомая дистанция между составами, как мы уже говорили выше, измеряется не от положения С до положения Н, а от положения С до положения К (конец припаркованного состава). Однако нам будет удобно найти весь остаточный путь СН (между положениями С и Н), а затем вычесть из него длину КН (между положениями К и Н), равную длине состава
Из
Длину отрезка ОН – это тормозной путь
Отсюда ясно, что вся длина СН = СО + ОН , т.е.
СН
Как было показано выше искомая дистанция
Итак:
О т в е т [[ I ]] :
дистанция между составами в аналитической форме
дистанция между составами с подстановкой известных величин:
где
*** [[ II ]] Решение задачи для второго варианта восстановленного условия во вложенной картинке:
О т в е т [[ II ]] :
дистанция между составами в аналитической форме
дистанция между составами с подстановкой известных величин:
где
и
Приложения:


Ответ дал:
0
спасиб
Ответ дал:
0
ОТВЕТ 100???
Ответ дал:
0
КАКОЙ ТОЧНЫЙ
Ответ дал:
0
Ответ дан формулой, для всех таких задач. В формулу (лучше всего из ответа [[[1]]] ) нужно подставить конкретные знаения для V, t и S. Так если, например: V = 57.6 км/ч = 16 м/с, t = 20 c и S = 160 м., то тогда ::: D = 16 ( 70 c - 20 с ) + 160 м - 100 м = 16 * 50 c + 60 м = 860 м.
Ответ дал:
0
При других данных и другой численный ответ. Но формула в ответе используется всегда одна и та же.
Похожие вопросы
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
9 лет назад
10 лет назад