• Предмет: Геометрия
  • Автор: GlebSTaR
  • Вопрос задан 10 лет назад

Нужно найти углы ромба, зная его диагонали.

 

Дано:

ABCD - ромб.

Диагональ 1 (d1) = 12 см.

Диагональ 2 (d2) = 12√3 (12 корней из 3) см.

 

Найти:

Углы ромба (∠A, ∠B, ∠C, ∠D = ?).

Ответы

Ответ дал: Куранов
0

ABCD - ромб.

Диагональ 1 (d1) = 12 см.

Диагональ 2 (d2) = 12√3 (12 корней из 3) см.

Приложения:
Ответ дал: dnepr1
0

Диагонали ромба, пересекаясь, образуют 4 равных прямоугольных треугольников, делятся точкой пересечения пополам.  Угол А=С=2arctg(6V3/6)=2*60=120 градусов, угол В=Д=(360-(2*120))/2=60 градусов, так как в выпуклом четырехугольнике сумма углов =360 градусов.

Есть и другой вариант определения углов В=Д=2arctg(6/6V3)=2*30=60 градусов.

Приложения:
Похожие вопросы