• Предмет: Геометрия
  • Автор: KsenyaBrend
  • Вопрос задан 9 лет назад

Помогите пожалуйста!!!
В окружность с радиусом 13 вписан равнобедренный треугольник. Известно, что синус угла при основании треугольника равен 12/13. Радиус OM пересекает под прямым углом боковую сторону в точке K. Найдите длину отрезка OK.

Ответы

Ответ дал: dnepr1
0
Так как радиус ОМ перпендикулярен боковой стороне, то по определению центра описанной окружности точка К - середина боковой стороны.
Пусть основание треугольника АС, тогда ВО равно радиусу R описанной окружности.
ОК = ОВ*cosKOB.
Угол КОВ равен углу А как взаимно перпендикулярные и cosKOB = cosА.
cosA = √(1-sin²A) = √(1-(144/169)) = √(25/169) = 5/13.
Тогда ОК = 13*(5/13) = 5.
Похожие вопросы