• Предмет: Геометрия
  • Автор: оптна
  • Вопрос задан 10 лет назад

Точка М не лежит в плоскости трапеции ABCD с основанием AD. Докажите, что прямая AD параллельна плоскости ВМС.

Ответы

Ответ дал: Lactosis
0

Дано: ABCD - трапеция общего вида, AD - основание трапеции, M *не принадлежит (Перечеркнутая буква Э, в зеркальном отражении)* плоскости ABCD.
Доказать: AD II BMC

"Точку M можно расположить где угодно, лишь бы она не входила в плоскость ABCD, т.е.
можно делать и не такой чертеж как у меня на рисунке."

Доказательство:
BC - общася сторона трапеции ABCD и треугольника BCM.
В любой трапеции основания параллельны, следовательно BC II AD.
По теореме, если прямая (AD) параллельна другой прямой находящейся в плоскости(BC), то эта прямая (AD) параллельна той  самой плоскости (BMC) -> AD II BMC, ч.т.д.

Приложения:
Похожие вопросы