В прямоугольном треугольнике ABC угол между биссектрисой СЛ и высотой CH, проведенная из вершины прямоугольного угла C, равен 39*. Найти меньший острый угол треугольника ABC.
Ответы
Ответ дал:
0
Ответ: 6*
Угол НCL=39*, следовательно угол HLC=51* (т.к. угол CHL=90*).
Угол CLB= 180*-51*=129*.
Угол BCL= 45*, т.к. CL- биссектриса.
Следовательно угол CBL= 180*-(129*+45*)=6*
Угол ACB=90*, угол ABC= 6*, тогда угол ВАС=84*.
Следовательно меньший острый угол треугольника АВС, это угол АВС=6*.
Похожие вопросы
2 года назад
7 лет назад
7 лет назад
10 лет назад
10 лет назад