• Предмет: Математика
  • Автор: ksusha557799
  • Вопрос задан 8 лет назад

Асимптоты кривых (наклонные)

y=(x^2)/(x^2 +1)

Ответы

Ответ дал: xxxeol
0
ДАНО
F(x) = x²/(x²+1)
НАЙТИ
Уравнение асимптоты.
РЕШЕНИЕ
Наклонная асимптота по формуле
Y = k*x + b, где коэффициент наклона
k= lim_{x to infty}  frac{F(x)}{x}= frac{1+ frac{1}{x^2} }{  frac{1}{x} +frac{1}{x^3} }=0
Наклонная асимптота превращается в горизонтальную.
Сдвиг по оси Y - b - по формуле
b= lim_{x to infty} [F(x) - kx] =  frac{1+ frac{1}{x^2} }{1+ frac{1}{x^2} }=1
Получилось уравнение горизонтальной линиии
Y = 1.
График прилагается.

Приложения:
Ответ дал: ksusha557799
0
это полностью выполненное задание?
Ответ дал: xxxeol
0
В вопросе только асимптоты - значит полностью.
Похожие вопросы