• Предмет: Геометрия
  • Автор: 78rabbit
  • Вопрос задан 8 лет назад

Длины сторон осевого сечения конуса равны 6 и 12см. Найдите площадь сечения конуса плоскостью, которая проходит через вершину конуса и хорду основания, стягивающую дугу в 60о.

Ответы

Ответ дал: dnepr1
0
В осевом сечении конуса - равнобедренный треугольник.
Если даны 2 его стороны, то 12 см - это образующая, а 6 см - диаметр круга в основании конуса (две стороны по 6 см невозможны при третьей в 12 см).
Радиус равен (1/2) диаметра - это 6/3 = 3 см.
Если хорда стягивает дугу в 60
°, то она равна радиусу.
Тогда площадь сечения конуса плоскостью, которая проходит через вершину конуса и хорду "а" основания, стягивающую дугу в 60°, равна:
S = (1/2)аН, где Н - высота треугольника в таком сечении.
Н = √12²-3²) = √(144-9) = √135 см.

Ответ: S = (1/2)3*√135 = (3/2)√135 ≈  17,42843 см².
Похожие вопросы