• Предмет: Геометрия
  • Автор: Диантус
  • Вопрос задан 10 лет назад

В равнобедренном треугольнике ABC c основанием AC проведена медиана BD.Докажите,что прямая BD касается окружности с центром C и радиусом,равным AD

Ответы

Ответ дал: KuOV
0
BD - медиана равнобедренного треугольника, проведенная к основания, значит и высота.
R = AD = CD.
Значит, CD⊥BD. CD - расстояние от центра окружности до прямой BD.
И CD - радиус окружности.
Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая является касательной.
Значит BD - касательная к окружности с центром С и радиусом CD.
Доказано

Приложения:
Похожие вопросы