• Предмет: Алгебра
  • Автор: GirnovaN
  • Вопрос задан 10 лет назад

решите неравенство x^2+11/2x-3>0

 

Ответы

Ответ дал: Minsk00
0

 x^2+11/2x-3>0
Разложим левую часть неравенства на множители
x^2+(11/2)x-3=0
D =121/4 +12 =169/4 =13/2
x1=(-11/2-13/2)/2= -6
x2=(-11/2+13/2)/2 =1/2
(x+6)(x-1/2)=0
Необходимо решить неравенство
(x+6)(x-1/2)>0
Решим неравенство методом интервалов
На числовой оси находим и отображаем (методом подстановки)
знаки левой части неравенства
    +     0    -      0        +
---------!---------!---------
          -6         1/2
Следовательно неравенство имеет решение для
х принадлежащего (-бесконеч;-6)U(1/2;+бесконечн)

Похожие вопросы