Ответы
Ответ дал:
0
По теореме Виета можно найти корни квадр. ур-ия.В 1-ом уравнении корни х=2 или х=4. Наибольший корень х=4.
Во втором уравнении сначала надо разделить его на 2, получим такое же уравнение, как и в 1-ом примере.То есть наибольший корень(решение) х=4.
В третьем равенстве, решениями будут числа (-2) или (-5).Большее из них х=-2. А меньшее х=-5.
Корни также можно находить через дискриминант D=b^2-4ac.
1) D=36-4*8=36-32=4, x_1=(6-2)/2=2 , x_2=(6+2)/2=4
2) Аналогично
3) D=49-40=9, x_1=(-7-3)/2=-5, x_2=(-7+3)/2=-2
Во втором уравнении сначала надо разделить его на 2, получим такое же уравнение, как и в 1-ом примере.То есть наибольший корень(решение) х=4.
В третьем равенстве, решениями будут числа (-2) или (-5).Большее из них х=-2. А меньшее х=-5.
Корни также можно находить через дискриминант D=b^2-4ac.
1) D=36-4*8=36-32=4, x_1=(6-2)/2=2 , x_2=(6+2)/2=4
2) Аналогично
3) D=49-40=9, x_1=(-7-3)/2=-5, x_2=(-7+3)/2=-2
Ответ дал:
0
Эта писанина и есть лбъяснение решения. Корни всегда легче находить по теореме Виета.
Ответ дал:
0
Теорема Виета: произведение корней равно свободному члену ( в первом уравнении это 8), а сумма корней равна второму коэффициенту, взятому с противоположным знаком (в 1 примере это +6).А теперь идёт твоё соображение, какие это числа. Подходят 2 и 4. В остальных примерах аналогично.
Похожие вопросы
2 года назад
2 года назад
7 лет назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад