В равнобедренной трапеции ABCD диагональ AC делит угол при нижнем основании AD, равный 60°, пополам. BH − высота трапеции. Найдите Sтрапеции , если меньшее основание равно 6 см.
Ответы
Ответ дал:
0
Чертеж во вложении.
1) Т.к. диагональ АС - биссектриса ∠А, то ∠1=∠2.
Т.к. АД||ВС и АС - секущая , то ∠2=∠3 (накрест лежащие).
Значит, ∠1=∠2=∠3. Поэтому ∆АВС - равнобедренный с основанием АС. Значит, АВ=ВС. Таким образом, АВ=ВС=СД=6см.
2) Опустим высоты ВН и СК. ∆АВН=∆ДСК. Значит, АН=ДК.
В ∆АВН

Ответ:
cм^2
1) Т.к. диагональ АС - биссектриса ∠А, то ∠1=∠2.
Т.к. АД||ВС и АС - секущая , то ∠2=∠3 (накрест лежащие).
Значит, ∠1=∠2=∠3. Поэтому ∆АВС - равнобедренный с основанием АС. Значит, АВ=ВС. Таким образом, АВ=ВС=СД=6см.
2) Опустим высоты ВН и СК. ∆АВН=∆ДСК. Значит, АН=ДК.
В ∆АВН
Ответ:
Приложения:


Похожие вопросы
2 года назад
2 года назад
7 лет назад
7 лет назад
10 лет назад
10 лет назад