Каких чисел больше среди первых 1000 натуральных чисел: тех, которые делятся на 3 или на 5, или тех, которые не делятся ни на 3, ни на 5? i pocemu/?
Ответы
Ответ дал:
0
Числа, которые делятся на 3, можно записать формулой:
а = 3n, n∈N
Найдем, сколько их в первой 1000:
3n ≤ 1000
n ≤ 333 1/3, а т.к. n - натуральное, то n = 333
Числа, которые делятся на 5, можно записать формулой:
а = 5n, n∈N
Найдем, сколько их в первой 1000:
5n ≤ 1000
n ≤ 200, а т.к. n - натуральное, то n = 200
Количество чисел, которые не делятся ни на 3 ни на 5:
1000 - 200 - 333 = 467
Их больше!
а = 3n, n∈N
Найдем, сколько их в первой 1000:
3n ≤ 1000
n ≤ 333 1/3, а т.к. n - натуральное, то n = 333
Числа, которые делятся на 5, можно записать формулой:
а = 5n, n∈N
Найдем, сколько их в первой 1000:
5n ≤ 1000
n ≤ 200, а т.к. n - натуральное, то n = 200
Количество чисел, которые не делятся ни на 3 ни на 5:
1000 - 200 - 333 = 467
Их больше!
Похожие вопросы
2 года назад
6 лет назад
9 лет назад
9 лет назад
9 лет назад