Дано альфа,бета принадлежат 2 четверти,cos=-12/13, sin=4/5, найти sin(альфа+бета), cos(альфа-бета)
Ответы
Ответ дал:
0
cosA=-12/13
sinA=sqrt(1-cos^2(A))=sqrt(1-144/169)=sqrt(25/169)=5/13 (знак + -2 четверть)
sinB=4/5
cosB=sqrt(1-sin^2(B))=sqrt(1-16/25)=sqrt(9/25)=-3/5 (знак - -вторая четверть)
cos(A+B)=cosA*cosB-sinA*sinB=
(-12/13)*(-3/5)-(5/13)*(4/5)=(36/65)-(15/65)=21/65
cos(A-B)=cosA*cosB+sinA*sinB=
(-12/13)*(3/5)+(5/13)*(4/5)=(36/65)+(15/65)=51/65
Похожие вопросы
2 года назад
2 года назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад