Ответы
Ответ дал:
0
2.
Боковое ребро, высота и радиус описанной вокруг треугольника окружности образуют прямоугольный треугольник.
Радиус описанной вокруг треугольника основания окружности равен:

Тогда по теореме Пифагора высота пирамиды равна:

Ответ А.
4. Поскольку все боковые ребра равны, то основание высоты пирамиды - точка пересечения диагоналей прямоугольника. Тогда высота, боковое ребро и половина диагонали прямоугольника образуют прямоугольный треугольник.
По теореме Пифагора диагональ равна:

Половина диагонали 5 см. Тогда по теореме Пифагора высота равна:

Ответ: Б
Боковое ребро, высота и радиус описанной вокруг треугольника окружности образуют прямоугольный треугольник.
Радиус описанной вокруг треугольника основания окружности равен:
Тогда по теореме Пифагора высота пирамиды равна:
Ответ А.
4. Поскольку все боковые ребра равны, то основание высоты пирамиды - точка пересечения диагоналей прямоугольника. Тогда высота, боковое ребро и половина диагонали прямоугольника образуют прямоугольный треугольник.
По теореме Пифагора диагональ равна:
Половина диагонали 5 см. Тогда по теореме Пифагора высота равна:
Ответ: Б
Похожие вопросы
2 года назад
2 года назад
6 лет назад
6 лет назад
9 лет назад
9 лет назад
9 лет назад