• Предмет: Геометрия
  • Автор: Natasha2910
  • Вопрос задан 8 лет назад

Дан тетраэдр ABCD, все ребра которого равны 12. Точка M - середина ребра BD, точка P делит ребро AC в отношении 5:7, считая от C . Найдите длину отрезка. прямой, заключенного внутри тетраэдра, если эта прямая проходит через точку P параллельно прямой CM

Ответы

Ответ дал: dnepr1
0
АМС - равнобедренный треугольник.
АМ = СМ = √(12²+6²-2*12*6*cos 60°) = √(144+36-72) = √108 = 6√3.
Пусть РК - отрезок. прямой, заключенный внутри тетраэдра, если эта прямая проходит через точку P параллельно прямой CM
Из подобия треугольников АКР и АМС находим:
Искомый отрезок РК = (7/12)*СМ = (7/12)*6
√3 = 7√3/2 = 3,5√3 ≈  6,062178.
Похожие вопросы