Дана клетчатая доска 8×8. Ефим разрезал её по сторонам клеток на различные по форме прямоугольники.
Какое наибольшее количество прямоугольников могло получиться у Ефима?
Прямоугольники считаются одинаковыми по форме, если их можно совместить движением (параллельным переносом с последующим поворотом).
Ответы
Ответ дал:
0
Будем выписывать самые маленькие по площади прямоугольники различной формы (которые можно вырезать из квадрата 8x8 по линиям сетки), пока сумма их площадей меньше 64 (площади квадрата 8x8):
1x1, 1x2, 1x3, 1x4, 2x2, 1x5, 1x6, 2x3, 1x7, 1x8, 2x4, 3x3
Сумма их площадей равна 63. Значит больше 12 прямоугольников получится не могло. Пример разрезания на 12 прямоугольников - в приложении к ответу (там вместо прямоугольника 3x3 взят прямоугольник 2x5, чтобы суммарная площадь была в точности равна 64)
1x1, 1x2, 1x3, 1x4, 2x2, 1x5, 1x6, 2x3, 1x7, 1x8, 2x4, 3x3
Сумма их площадей равна 63. Значит больше 12 прямоугольников получится не могло. Пример разрезания на 12 прямоугольников - в приложении к ответу (там вместо прямоугольника 3x3 взят прямоугольник 2x5, чтобы суммарная площадь была в точности равна 64)
Приложения:

Похожие вопросы
2 года назад
2 года назад
2 года назад