• Предмет: Математика
  • Автор: misslegan5
  • Вопрос задан 8 лет назад

Сторона основания правильной треугольной пирамиды равно 6см, а высота - корень из 13см. Найдите площадь полной поверхности пирамиды.
Подробное решение, обязательно с рисунком.

Ответы

Ответ дал: dnepr1
0
Дано: сторона основания правильной треугольной пирамиды a = 6 см, а высота H= 13 см. 

Находим апофему А. Её проекция ОА на основание равна (1/3)h, где h - высота основания.
h = a*sin 60
° = 6*(√3/2) = 3√3 см. 
ОА = (1/3)*(3
√3) = √3 см.
Тогда апофема А = √(ОА² + Н²) = √((√3)² + (√13)²) = √16 = 4 см.
Периметр основания Р = 3а = 3*6 = 18 см.
Площадь боковой поверхности Sбок = (1/2)РА = (1/2)*18*4 = 36 см².
Площадь основания Sо = а²√3/4 = 36*√3/4 = 9√3 см².
Площадь S полной поверхности пирамиды равна: 
S = So + Sбок = 9
√3+36 = 9(4 + √3) см².
Похожие вопросы