Высота конуса равна 4 см, а угол при вершине осевого сечения равен 120 градусов. Найдите площадь основания конуса и объём.
Приложения:

Ответы
Ответ дал:
0
Осевое сечение конуса это р/б треугольник( диаметр основания это основание р.б треугольника)
Высота конуса совпадает с высотой р/б треугольника.
Высота в р.б треугольнике является и медианой, и биссектрисой. И делит треугольник на два равных прямоугольных треугольника, рассмотрим один из них:
В нём мы знаем:
Катет в 4см и можем найти один из углов, который находится при вершине р.б.(120/2=60*)
Сумма острых углов в прямоугольном треугольнике 90*.
Найдём второй острый угол(90*-60*=30*)
Напротив угла в 30* находится катет равный половине гипотенузы.
Напротив этого угла у нас лежит катет в 4 см, значит гипотенуза равна 8 см(2*4см)
По теореме Пифагора найдём второй катет, равный радиусу:


В основании цилиндра лежит окружность , найдём площадь

Объём цилиндра:


Высота конуса совпадает с высотой р/б треугольника.
Высота в р.б треугольнике является и медианой, и биссектрисой. И делит треугольник на два равных прямоугольных треугольника, рассмотрим один из них:
В нём мы знаем:
Катет в 4см и можем найти один из углов, который находится при вершине р.б.(120/2=60*)
Сумма острых углов в прямоугольном треугольнике 90*.
Найдём второй острый угол(90*-60*=30*)
Напротив угла в 30* находится катет равный половине гипотенузы.
Напротив этого угла у нас лежит катет в 4 см, значит гипотенуза равна 8 см(2*4см)
По теореме Пифагора найдём второй катет, равный радиусу:
В основании цилиндра лежит окружность , найдём площадь
Объём цилиндра:
Похожие вопросы
2 года назад
2 года назад
2 года назад
8 лет назад
9 лет назад