• Предмет: Математика
  • Автор: Mariiiiiiiiiiii9
  • Вопрос задан 7 лет назад

Знайдіть суму нескінченної геометричної прогресії 125; -25; 5; …

Ответы

Ответ дал: Аноним
0

Знаменатель прогрессии:  q=dfrac{b_2}{b_1}=dfrac{-25}{125}=-dfrac{1}{5}


Сумма бесконечно убывающей геометрической прогрессии:


 S=dfrac{b_1}{1-q}=dfrac{125}{1+dfrac{1}{5}   }=  dfrac{625}{6}

Ответ дал: snow99
0

q = b2/b1 = -25/125 = -1/5

S = b1/(1 - q) = 125 : (1 - (-1/5)) = 125: (1 + 1/5) = 125 : 6/5 = 125 * 5/6 = 625/6

Похожие вопросы