ПОМОГИТЕ!!! ДАЮ 30 БАЛЛОВ!!!
О - точка пересечения биссектрис треугольника АВС. Радиусы кругов, описанных вокруг треугольников АВС и АОВ, равны 5 корней из 2 см и 5 см соответственно. Найдите величину угла С.
Ответы
Ответ дал:
0
баллы мне не нужны , это так-развлечение
Приложения:


Ответ дал:
0
угол ВОА=90+альфа сейчас исправлю)
Ответ дал:
0
как дополнение -доказательство теоремы о трезубце , которую использовал Михаил
Ответ дал:
0
S-центр окружности , описанной около тр AO1C, а еще на этой окружности лежит центр вневписанной окружности , касающейся стороны АС ( небольшое обобщение)
Ответ дал:
0
А мы пойдём другим способом:
А) Рассмотрим рисунок 2 :
Пусть угол ВСО = а
Обозначим точку K, как точку пересечения прямой СО с окружностью, описанной около ∆ АВС, точка О – центр вписанной окружности ∆ АВС, тогда →
KB = KO = KA = 5 см - радиусы описанной окружности около треугольника АВО – по теореме о трилистнике или лемме о трезубце, или лемме Мансиона.
Рассмотрим ∆ ВКС:
По теореме синусов:
2R = BK / sin ВСО
2·5√2 = 5/ sina
sina = √2/4
cosC = cos2a = 1 – 2sin²a = 1 – 2·( √2/4 )² = 3/4 →
угол С = arccos( 3/4 )
Или можно поступить следующим образом:
Б) Рассмотрим рисунок 1 :
точка Е - центр окружности, описанной около треугольника АВС
KE = AE = 5•( корень из 2 )
Рассмотрим тр. АКЕ:
По теореме косинусов:
АК^2 = АЕ^2 + КЕ^2 - 2• АЕ•КЕ•cos AEK
25 = 50 + 50 - 2•50•cos AEK
cos AEK = 3/4
угол АЕК = arccos( 3/4 )
Угол АСВ является вписанным углом окружности с центром в точке Е
▪Вписанный угол равен половине дуги, на которую этот угол опирается ▪
Угол АСВ = ( 1/2 ) • U AKB
U BK = U KA - равные хорды ВА и КА стягивают равные дуги
Угол АСВ = ( 1/2 ) • U AKB = U KA = U BK
Угол АКЕ является центральным углом окружности с центром в точке Е
▪ Центральный угол равен дуге, на которую этот угол опирается ▪
Угол АКЕ = U KA
Значит, угол АСВ = угол АКЕ = arccos( 3/4 )
Также если сделать замену:
r - радиус описанной окружности около треугольника АОВ
R - радиус описанной окружности около треугольника АВС , тогда
угол АСВ = arccos( ( 2R^2 - r^2 )/ 2R^2 )
ОТВЕТ: угол С = arccos( 3/4 )
А) Рассмотрим рисунок 2 :
Пусть угол ВСО = а
Обозначим точку K, как точку пересечения прямой СО с окружностью, описанной около ∆ АВС, точка О – центр вписанной окружности ∆ АВС, тогда →
KB = KO = KA = 5 см - радиусы описанной окружности около треугольника АВО – по теореме о трилистнике или лемме о трезубце, или лемме Мансиона.
Рассмотрим ∆ ВКС:
По теореме синусов:
2R = BK / sin ВСО
2·5√2 = 5/ sina
sina = √2/4
cosC = cos2a = 1 – 2sin²a = 1 – 2·( √2/4 )² = 3/4 →
угол С = arccos( 3/4 )
Или можно поступить следующим образом:
Б) Рассмотрим рисунок 1 :
точка Е - центр окружности, описанной около треугольника АВС
KE = AE = 5•( корень из 2 )
Рассмотрим тр. АКЕ:
По теореме косинусов:
АК^2 = АЕ^2 + КЕ^2 - 2• АЕ•КЕ•cos AEK
25 = 50 + 50 - 2•50•cos AEK
cos AEK = 3/4
угол АЕК = arccos( 3/4 )
Угол АСВ является вписанным углом окружности с центром в точке Е
▪Вписанный угол равен половине дуги, на которую этот угол опирается ▪
Угол АСВ = ( 1/2 ) • U AKB
U BK = U KA - равные хорды ВА и КА стягивают равные дуги
Угол АСВ = ( 1/2 ) • U AKB = U KA = U BK
Угол АКЕ является центральным углом окружности с центром в точке Е
▪ Центральный угол равен дуге, на которую этот угол опирается ▪
Угол АКЕ = U KA
Значит, угол АСВ = угол АКЕ = arccos( 3/4 )
Также если сделать замену:
r - радиус описанной окружности около треугольника АОВ
R - радиус описанной окружности около треугольника АВС , тогда
угол АСВ = arccos( ( 2R^2 - r^2 )/ 2R^2 )
ОТВЕТ: угол С = arccos( 3/4 )
Приложения:


Ответ дал:
0
согласен , желательно знать все теоремы(задачи) из книги Гордина "Теоремы и задачи школьной геометрии " , но боюсь наш школьник не поймет наших решений
Ответ дал:
0
буду рад ошибиться
Ответ дал:
0
очень красивое решение , но картинки не хватает
Ответ дал:
0
Скоро добавлю рисунок )
Ответ дал:
0
Добавил.
Похожие вопросы
2 года назад
2 года назад
2 года назад
8 лет назад
8 лет назад
9 лет назад