Высота правильной четырёхугольной пирамиды равна 8 см. Сторона ее основания равна 10 см. Вычислить : а) длину бокового ребра пирамиды ;
Б) площадь боковой поверхности пирамиды
Ответы
Ответ дал:
0
пирамида КАBCD (диагонали АС и ВD пересекаются в точке О, высота КО). В треугольнике КОС по теореме Пифагора КС^2=KO^2+OC^2.ОС-радиус описанной окружности и равен AD/корень из 2= 6 корней из 2. КС=корень из 136. Потом проводишь апофему КН и отрезок ОН. ОН-радиус вписанной окружности=AD/2=6. В треугольнике КОН по теореме Пифагора КН=10. Площадь боковой поверхности =1/2Росн*КН=240
Похожие вопросы
2 года назад
2 года назад
2 года назад
8 лет назад
9 лет назад