Дана прямоугольная трапеция,большее основание которой равно 24 см,а радиус вписанной в неё окружности 6 см.Найдите площадь трапеции
Ответы
Ответ дал:
0
Сторона трапеции, перпендикулярная основаниям и играющая роль высоты равна двум радиусам т.е.12. Пусть малое основпние равно х. Тогда сумма оснований 24+х. Эта же величина равна сумме боковых сторон, т.к. трапеция описана. Поэтому большая боковая сторона равна 24+х-12=12+х.
Теперь из вершины тупого угла С опустим СМ высоту на большое основанип АД, СД большая боковая сторона, МД=24-х.. Из прямоугольного треугольника СДМ имеем уравнение
144+(24-х)^2=(12+х)^2
144+576-48х+х^2=144+24х+х^2
72х=576
х=8 длина верхнего основания.
Площадь равна
(24+8):2*12=32*6=192.
Похожие вопросы
2 года назад
2 года назад
2 года назад
2 года назад
8 лет назад
8 лет назад
9 лет назад