• Предмет: Математика
  • Автор: dfhgfgi
  • Вопрос задан 7 лет назад

Вычислить площадь фигуры, ограниченной линиями y=x^2-2, y=2x+1. Нарисуйте графики и заштрихуйте фигуру.

Ответы

Ответ дал: kiramaxx
0

Ответ:

10,7

Пошаговое объяснение:

Требуется вычислить площадь, заключенную между параболой y=x^2-2 и прямой y=2x+1.


Найдем точки пересечения параболы и прямой:


[left{ begin{array}{l}y = {x^2} - 2\y = 2x + 1end{array} right. Leftrightarrow left{ begin{array}{l}2x + 1 = {x^2} - 2\y = 2x + 1end{array} right. Leftrightarrow left{ begin{array}{l}2x + 1 - {x^2} + 2 = 0\y = 2x + 1end{array} right. Leftrightarrow left{ begin{array}{l} - {x^2} + 2x + 3 = 0\y = 2x + 1end{array} right.]% MathType!End!2!1!

- {x^2} + 2x + 3=0

Найдем дискриминант квадратного уравнения:

D = {b^2} - 4a = {2^2} - 4( - 1)*3 = 4 + 12 = 16

{x_{1,2}} = frac{{ - b pm sqrt {{b^2} - 4ac} }}{{2a}}

{x_1} = frac{{ - 2 - sqrt {16} }}{{2*( - 1)}} = frac{{ - 2 - 4}}{{ - 2}} = frac{{ - 6}}{{ - 2}} = 3

{x_2} = frac{{ - 2 + sqrt {16} }}{{2*( -1)}} = frac{{-2+ 4}}{{- 2}} = frac{2}{{-2}} =-1

Подставим x в уравнение:

y₁=7; y₂=-1

Получаем две точки пересечения : (3;7) и (-1;-1)

Пределы интегрирования a=-1, b=3. Площадь фигуры равняется:

S = intlimits_{- 1}^3 {(2x + 1) - ({x^2} - 2)dx =} intlimits_{-1}^3 (-{x^2} + 2x + 3)dx =

= - intlimits_{- 1}^3 {{x^2}dx + } 2intlimits_{- 1}^3 {x *dx}+3intlimits_{- 1}^3 {1 *dx}=- left. {frac{{{x^3}}}{3}} right|_{- 1}^3 + 2left. {frac{{{x^2}}}{2}} right|_{- 1}^3+3left. {frac{x}{1}} right|_{ - 1}^3

F(3) =- frac{{{3^3}}}{3} + {3^2} + 3*3 = 9

F( - 1) =- frac{{{{(- 1)}^3}}}{3} + {(-1)^2} + (- 1)*3 =- frac{5}{3}

F(3) - F( - 1) = 9 - (- frac{5}{3}) = frac{{32}}{3} approx 10,7


Графики прилагаются.

Приложения:
Похожие вопросы