• Предмет: Алгебра
  • Автор: oled55
  • Вопрос задан 7 лет назад

В равнобедренном треугольнике АВС (АВ = ВС) вписано круг. Через конец диаметра, перпендикулярно к основанию AC, провели касательную, которая пересекает стороны BA и BC в точках K и M соответственно. Найдите периметр четырехугольника AKMC, если периметр треугольника ABC равен 60 см, периметр треугольника BKM равен 20 см, KM: CA = 1 : 3.

Ответы

Ответ дал: as11111
0

Т.к. KM и AC перпендикулярны одному и тому же диаметру окружности, то они параллельны. Следовательно треугольники ABC и ВКМ подобны. Коэффициент подобия найдем из отношения их периметров: k = 60 / 20 = 3

P_{AKMC}=AK+KM+MC+AC=AB-BK+KM+BC-BM+AC+KM-KM=(AB+BC+AC)-(BK+BM+KM)+2KM=P_{ABC}-P_{BKM}+2KM

Найдем КМ. Т.к. в четырехугольник AKMC вписана окружность, то суммы его противоположных сторон равны:

AK+MC=AC+KM\AB-BK+BC-BM=AC+KM

К левой и правым частям добавим AC и вычтем KM:

AB-BK+BC-BM+AC-KM=AC+KM+AC-KM\AB+BC+AC-(BK+BM+KM)=2AC\P_{ABC}-P_{BKM}=2AC\2AC=40\AC=20

Откуда KM = 20 / 3

P_{AKMC}=P_{ABC}-P_{BKM}+2KM=60-20+frac{2}{3}*20=frac{160}{3}

Похожие вопросы