Ответы
Ответ дал:
0
Проведем радиусы OA и OB, очевидно OA=OB=R.
Проведем отрезок OC.
По известной теореме: радиус окружности, проведенный в точку касания, перпендикулярен касательной. То есть <OAC = <OBC = 90°.
Поэтому треугольники OAC и OBC являются прямоугольными.
Кроме того, эти треугольники равны (по гипотенузе и катету, OA=OB=R,
OC = OC). (есть такая теорема: равенство прямоугольных треугольников по гипотенузе и катету), кроме того вторые катеты равны по теореме Пифагора. AC = √(OC² - R²) = BC.
То есть AC=BC.
Похожие вопросы
2 года назад
2 года назад
8 лет назад
8 лет назад
9 лет назад
9 лет назад