• Предмет: Алгебра
  • Автор: МаДиНаДАГ
  • Вопрос задан 1 год назад

Решите логарифмическое уравнение. С подробным решением, пожалуйста ​

Приложения:

Ответы

Ответ дал: NNNLLL54
1

log_3^2x+5=2\, log_3x^3\; \; ,\; \; \; ODZ:\; x>0\; ,\\\\log_3^2x-2\cdot 3log_3x+5=0\\\\t=log_3x\; ,\; \; \; t^2-6t+5=0\; ,\; \; t_1=1\; ,\; t_2=5\; \; (teorema\; Vieta)\\\\a)\; \; log_3x=1\; ,\; \; x=3\\\\b)\; \; log_3x=5\; \; ,\; \; x=3^5\; ,\; \; x=243\\\\Otvet:\; \; x=3\; ,\; x=243\; .

Ответ дал: Аноним
0

Ответ: во вложении Объяснение:

Приложения:
Похожие вопросы