В треугольнике АВС площадь которого равна 6✓2 , АВ 9см А 45° найдите сторону АС и опущенную на неё высоту
Ответы
Ответ дал:
122
Ответ:
см
см
Объяснение:
ВН - высота, опущенная на АС.
В прямоугольном треугольнике АВН ∠А = 45°, значит и ∠АВН = 45°, тогда треугольник равнобедренный,
ВН = АН = х
По теореме Пифагора AB² = AH² + BH²,
x² + x² = 81
2x² = 81
x² = 81/2
см
Площадь треугольника АВС:
см
Приложения:

Похожие вопросы
1 год назад
1 год назад
1 год назад
2 года назад
2 года назад
8 лет назад