• Предмет: Геометрия
  • Автор: teterev
  • Вопрос задан 10 лет назад

Отрезок AF-медиана равнобедренного треугольника АВС с основанием ВС. Вычислите длину медианы AF, если периметр треугольника АВС равен 16 см, А ПЕРИМЕТР ТРЕУГОЛЬНИКА AFB равен 12 см

Ответы

Ответ дал: Hrisula
0

Периметр ∆ АВС=АВ+АС+ВС. 

АВ=АС

Медиана  треугольника делит пополам сторону, к которой проведена. ⇒ 

ВF=CF

ВС=2BF ⇒ 

P ABC= 2 AB+2 BF

Периметр АВF=AB+ВF+AF

AB+BF=P ABC:2=16:2=8 

AF= P ABF- AB+BF=12-8=4 см

-------

Или короче:

АВ+ВF=P ∆ ABC:2=8

AB+BF+AF=12

AF=12-(AB+BF)=12-8=4(см)

Приложения:
Похожие вопросы