• Предмет: Алгебра
  • Автор: sofipolishchuk2
  • Вопрос задан 7 лет назад

найти дискриминант и корни
119(3,4,5,6)
120(1,2,4)
125
срочно~

Приложения:

Ответы

Ответ дал: wsaspo
0

Ответ:

119. \ 3)10 {x}^{2}  - 9x + 2 = 0 \ d =  {b}^{2}  - 4ac = 81  - 80 = 1 \ x1 =  frac{9 - 1}{2 times 10} = 0.4 \ x2 =  frac{9 + 1}{2 times 10}   = 0.5

4) : 21 {x}^{2}  - 2x - 3 = 0 \ d = 4  + 252 =  sqrt{256}  = 16 \ x1 =  frac{2 - 16}{2 times 21}  =  frac{ - 14}{42}  =  -  frac{1}{3}  \ x2 =  frac{2 + 16}{42}  =  frac{3}{7}

5) :  {x}^{2}  + 8x - 13 = 0 \ d = 64 + 52 =  sqrt{116}  = 10.7 \ x1 =  frac{ - 8 - 10.7}{2}  =  - 9.35 \ x2 =  frac{ - 8 + 10.7}{2}  = 1.35

6) : 2 {x}^{2}  - 4x - 17 = 0 \ d = 16 + 136 =  sqrt{152}  = 12.3 \ x1 =   frac{4 - 12.3}{4}  =  - 2.075 \ x2 =  frac{4 + 12.3}{4}  = 4.075

120. \ 1) : 3 {x}^{2}  - 12x + 2x - 8 = 5 \ 3 {x}^{2}  - 10x - 13 = 0 \ d = 100 + 156 =  sqrt{256}  = 16 \ x1 =  frac{10 - 16}{6}  =  - 1 \ x2 =  frac{10 + 16}{6}  =  4.3= 4 times frac{1}{3}

2) :  {x}^{2}  - 2x + x - 2 - 4 {x}^{2}  - 20x + 3x + 15 =  {x}^{2}  - 9x \  - 4 {x}^{2}    - 9x + 13 = 0 :  times ( - 1) \ 4 {x}^{2}  + 9x - 13 = 0 \ d = 81 + 208 =   sqrt{289}  = 17 \ x1 =  frac{ - 9 - 17}{8}  =  - 3.25 \ x2 =  frac{ - 9 + 17}{8}  = 1

4) : 27 {x}^{3 }  + 1 - 27 {x}^{3}  + 18 {x}^{2}  - 6x + 4 = 16 {x}^{2}  + 1 \ 2 {x}^{2}  - 6x - 4 = 0 :  :  div 2 \  {x}^{2}  - 3x - 2 = 0 \ d = 9 + 8 =  sqrt{17}  = 4.1 \ x1 =  frac{3 + 4.1}{2}  = 3.55 \ x2 =  frac{3 - 4.1}{2}  =  - 0.55

Похожие вопросы