• Предмет: Математика
  • Автор: rms20
  • Вопрос задан 2 года назад

В каждой клетке шахматной доски размера 44×44 записано число, равное количеству клеток, в которые может попасть шахматный конь, если бы он стоял на данной клетке. Чему равна сумма чисел, написанных на доске?


nextyzzz: Знаешь ответ?
zxspect: 22

Ответы

Ответ дал: zxspect
1

Ответ:

22

Пошаговое объяснение:

так надо


skatkova1207: 1. Заметим, что из угловых клеток шахматный конь может прыгнуть ровно в 2 различные клетки, следовательно, в угловых клетках записано число 2. Таким образом, вклад от угловых клеток равен 2⋅4=8.
2. Заметим, что в соседних с угловыми клетках, расположенных на краю доски, записано число 3. Следовательно, вклад от таких клеток в общую сумму даст 3⋅8=24.
skatkova1207: 3. Для остальных клеток, расположенных на краю доски (которых ровно 4⋅(44−4)=160 штук) существует ровно 4 способа передвинуть шахматного коня на новую клетку, а значит, в этих клетках записано число 4. Кроме того, в клетках, соседних по диагонали с угловыми, также записано число 4. Отсюда вклад тех клеток, в которых записано число 4, равен 4⋅160+4⋅4=656.
skatkova1207: 4. Для остальных клеток, которые расположены во втором столбце в начале и в конце доски, а также во второй строчке вверху и внизу доски, записано число 6. Таких клеток ровно 160 штук, и вклад от них равен 160⋅6=960.
skatkova1207: 5. Из остальных клеток, очевидно, шахматный конь может перейти в новые 8 способами (и это максимально возможное число способов). Поскольку оставшихся клеток ровно (44−4)2=1600 штук, то сумма чисел, записанных в этих клетках, составляет 8⋅1600=12800.
6. Суммируя значения, записанные в клетках доски, получим
8+24+656+960+12800=14448.

Правильный ответ: 14448.
Похожие вопросы