• Предмет: Алгебра
  • Автор: sofialebed007
  • Вопрос задан 2 года назад

Выдели полный квадрат из квадратного трехчлена nx2 – 2(n + 4)x + 6.


СРОЧНО ПОЖАЛУЙСТА!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Ответы

Ответ дал: NNNLLL54
3

Ответ:

nx^2-2(n+4)x+6=n\cdot \Big(x^2-2\cdot \dfrac{n+4}{n}\cdot x\Big)+6=\\\\\\=n\cdot \Big(\Big(x-\dfrac{n+4}{n}\Big)^2-\Big(\dfrac{n+4}{n}\Big)^2\Big)+6=n\cdot \Big(x-\dfrac{n+4}{n}\Big)^2-n\cdot \dfrac{(n+4)^2}{n^2}+6=\\\\\\= n\cdot \Big(x-\dfrac{n+4}{n}\Big)^2-\dfrac{(n+4)^2}{n}+6=n\cdot \Big(x-\dfrac{n+4}{n}\Big)^2+\dfrac{6n-(n+4)^2}{n^2}

\star \ \ x^2\pm px+q=\Big(x\pm \dfrac{p}{2}\Big)^2-\Big(\dfrac{p}{2}\Big)^2+q\ \ \star


Аноним: какой ответ
Аноним: я не понял
Аноним: Выдели полный квадрат из квадратного трехчлена п - 2(п + 4)х + 6.
Аноним: можешь это решить
Аноним: плиз
NNNLLL54: ответ - то , что записано после последнего знака равенства......... nx^2-2(n+4)x+6=n(x-(n+4)/n)^2+(6n-(n+4)^2)/n^2
Похожие вопросы