Точка M находится вне плоскости треугольника ABC (рис.). Треугольники ∆ABC ∆MAB, ∆MBC, ∆MAC равносторонние. Найдите угол между плоскостями треугольников ∆ABCи ∆MAC.
Приложения:

Ответы
Ответ дал:
6
Ответ:
Объяснение:
Пусть Н - середина АС.
Тогда ВН⊥АС как медиана и высота равностороннего треугольника АВС,
МН⊥АС как медиана и высота равностороннего треугольника МАС,
⇒ ∠МНВ - линейный угол двугранного угла между плоскостями треугольников АВС и МАС.
Если стороны треугольников равны а, то по формуле высоты равностороннего треугольника:
Из ΔМНВ по теореме косинусов:
Приложения:

Похожие вопросы
1 год назад
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
9 лет назад
∆АВС треугольник равносторонний АВ = 2√6.МА = МВ = МС = √10
Найдите угол между плоскостями треугольников ∆АВС и ∆МВС.Помогите пожалуйста =D