• Предмет: Алгебра
  • Автор: RainbowMoron
  • Вопрос задан 2 года назад

Помогите пожалуйста с решением

Приложения:

Ответы

Ответ дал: Miroslava227
0

Ответ:

1.

f'(x) = 5 {x}^{4}  + 7 {x}^{6}  + 12 {x}^{11}

f'( - 1) = 5 + 7 - 12 = 0

2.

f'(x) = 3 \times 5 {(x + 4)}^{4}  \times (x + 4) '=  \\  = 15 {(x + 4)}^{4}

f'( - 3) = 15 {(4 - 3)}^{4}  = 15

3.

f'(x) = ( {(x + 3)}^{7} ) '\times  {(x + 7)}^{3}  + ( {(x + 7)}^{3} )' \times  {(x + 3)}^{7}  =  \\  = 7 {(x + 3)}^{6}  {(x + 7)}^{3}  + 3 {(x + 7)}^{2}  {(x + 3)}^{7}  =  \\  =  {(x + 3)}^{6}  {(x + 7)}^{2} (7(x + 7) + 3(x + 3)) =  \\  = ( {x + 3)}^{6}  {(x + 7)}^{2} (7x + 49 + 3x + 9) =  \\  =  {(x + 3)}^{6}  {(x + 7)}^{2} (10x + 58)

f'( - 4) =  {( - 1)}^{6}  \times  {3}^{2}  \times ( - 40 + 58) =  \\  = 9 \times 18 = 162

4.

f'(x) = (7 {(x - 6)}^{ - 5} ) '=  - 35 {(x - 6)}^{ - 6}  =  \\  =  -  \frac{35}{ {(x - 6)}^{6} }

f'(7) =  -  \frac{35}{ {(7 - 6)}^{6} }  =  - 35 \\

5.

f'(x) = (4x + 3 +  \frac{7}{x} )' = 4 - 7 {x}^{ - 2}  =   \\ = 4 -  \frac{7}{ {x}^{2} }

f'( - 1) = 4 - 7 =  - 3

6.

f'(x) = 7 \times  \frac{1}{2}  ({6x + 19)}^{ -  \frac{1}{2} }  \times 6 =  \\  =  \frac{21}{ \sqrt{6x + 19} }

f'(5) =  \frac{21}{ \sqrt{30 + 19} }  =  \frac{21}{7} = 3  \\

7.

f'(x) =  \frac{9}{ { \cos }^{2} (x)}  + 8 \sin(x)  \\

f'( \frac{5\pi}{6} ) =  \frac{9}{ { \cos}^{2}( \frac{5\pi}{6} ) }  + 8 \sin( \frac{5\pi}{6} )  =  \\  =  \frac{9}{ \frac{3}{4} }  + 8 \times  \frac{1}{2}  = 12 + 4 = 16

8.

f'(x) =  \frac{( \sin(2x))'  \times  \cos(12x)  - ( \cos(12x)) '\times  \sin(2x)  }{ \cos ^{2} (12x) }  =  \\  \frac{2 \cos(2x) \times  \cos(12x)    + 12 \sin(12x)  \times  \sin(2x) }{ \cos ^{2} (12x) }

f'( \frac{\pi}{36} ) =  \frac{2 \cos( \frac{\pi}{18} )  \times  \cos( \frac{\pi}{3} )  + 12 \sin( \frac{\pi}{3} )  \sin( \frac{\pi}{18} ) }{ { (\cos( \frac{\pi}{3} )) }^{2} }  =  \\  =  \frac{2 \cos( \frac{\pi}{18} ) \times  \frac{1}{2}   +12 \times  \frac{ \sqrt{3} }{2}   \sin( \frac{\pi}{18} ) }{ \frac{1}{4} }  =  \\  = 4 \times ( \cos( \frac{\pi}{18} ) +  6 \sqrt{3}  \sin( \frac{\pi}{18} ) ) =  \\  = 4 \cos( \frac{\pi}{18} )  + 24 \sqrt{3}  \sin( \frac{\pi}{18} )

9.

f'(x) =  \frac{(x + 3)' {e}^{x - 4}  - ( {e}^{x - 4})'(x + 3) }{ {e}^{2(x - 4)} }  =  \\  =  \frac{ {e}^{x - 4} (1 - (x + 3)}{ {e}^{2(x - 4)} }  =   \\ =  \frac{1 - x - 3}{ {e}^{x - 4} }  =  \frac{ - x - 2}{ {e}^{x - 4} }

f'(4) =  \frac{ - 6}{ {e}^{0} }  =  - 6 \\

10.

f'(x) =  \frac{1}{6x - 5}   \times 6 \\

f'(5) =  \frac{6}{30 - 5}  =  \frac{6}{25}   \\

Похожие вопросы