• Предмет: Математика
  • Автор: dimu1234
  • Вопрос задан 2 года назад

помогите, пожалуйста. Очень срочно ​

Приложения:

Ответы

Ответ дал: Miroslava227
1

Ответ:

1

1.

f'(x) =  - 40 {x}^{7}

2

f'(x) =   \frac{1}{12}  \times ( - 12) {x}^{ - 13}  =  -  \frac{1}{ {x}^{13} }  \\

3

f'(x) = 6 \times ( -  {x}^{ - 2} ) =  -  \frac{6}{ {x}^{2} }  \\

4

f'(x) = 9 \times  \times  \frac{1}{2}  {x}^{ -  \frac{1}{2} }  =  \frac{9}{2 \sqrt{x} }  \\

5

f'(x) = 0

6

f'(x) = 44 {x}^{10}  - 9 {x}^{8}  + 18 {x}^{5}  + 4 {x}^{3}  - 12x + 1

7

f'(x) =  -  \frac{1}{ { \cos}^{2} x}  -  \frac{1}{ { \sin}^{2} }  + 2 \sin(x)  \\

8

f'(x) =  \cos(x)  + 14 {x}^{13}  \\

9

f'(x) =  -  \frac{1}{ { \sin }^{2}x }  - 12 \times ( -  {x}^{ - 2} ) - 7 =  \\  =  -  \frac{1}{ { \sin}^{2} x}  +  \frac{12}{ {x}^{2} }  - 7

10

f'(x) = ((5 + 4x) {x}^{7} )' = (5 {x}^{7}  + 4 {x}^{8} ) '=  \\  = 35 {x}^{6}  + 32 {x}^{7}

11

f'(x) = (3x - 18)'(1 + 5x) + (1 + 5x)'(3x - 18) =  \\  = 3(1 + 5x) + 5(3x - 18) =  \\  = 3 + 15x + 15x - 90 = 30x - 87

12

f'(x) = ( - 5x)'( \sin(x)  + x) + (x +  \sin(x) ) '\times ( - 5x) =  \\  =  - 5(x  + \sin(x) ) + (1 +  \cos(x) ) \times ( - 5x) =  \\  =  - 5(x +  \sin(x)  + x+  x\cos(x) ) =  \\  =  - 5( \sin(x)   + x\cos(x)  + 2x)

13

f'(x) =   \frac{(2x - 3)'(2x + 5) - (2x + 5)'(2x - 3)}{ {(2x + 5)}^{2} }  =  \\  =  \frac{2(2x + 5) - 2(2x - 3)}{ {(2x + 5)}^{2} }  =  \frac{4x + 10 - 4x + 6}{ {(2x  + 5)}^{2} }  =  \\  =  \frac{16}{ {(2x + 5)}^{2} }

14

f'(x) =  \frac{( {x}^{7} - 2 {x}^{6}   + x)' \times  \cos(x)  - (\cos(x))' \times ( {x}^{7} - 2 {x}^{6}   + x)  }{ { \cos }^{2}x }  =  \\  =  \frac{(7 {x}^{6} - 12 {x}^{5}  + 1) \cos(x)  -  \sin(x)  \times ( {x}^{7}   - 2 {x}^{6} + x) }{ { \cos }^{2}x }

15

f'(x) = ( \frac{5 {x}^{8} + 3 }{ \sqrt{x} } ) '= ( \frac{5 {x}^{8} }{ \sqrt{x} }  +  \frac{3}{ \sqrt{x} } )' =  \\  = (5 {x}^{ \frac{7}{2} }  + 3 {x}^{ -  \frac{1}{2} } )' = 5 \times  \frac{7} {2}  {x}^{ \frac{5}{2} }  - 3 \times  \frac{1}{2}  {x}^{ -  \frac{3}{2} }  =  \\  =  \frac{35}{2}  {x}^{2}  \sqrt{x}  -  \frac{3}{2x \sqrt{x} }

16

f-(x) = 16 {(2 - 10x)}^{15}  \times (2 - 10x)' =  \\  = 16 {(2 - 10x)}^{15}  \times ( - 10) =  \\  =  - 160 {(2 - 10x)}^{15}

17

f'(x) =  \frac{1}{2}  {( {x}^{17} - 9 {x}^{3}  + 1.2) }^{ -  \frac{1}{2} }  \times ( {x}^{17}  - 9 {x}^{3}  + 1.2)' =  \\  =  \frac{17 {x}^{16}  - 27 {x}^{2} }{2 \sqrt{ {x}^{17}  - 9 {x}^{3}  + 1.2} }

18

f'(x) =  ( -  {tg}^{ - 1} x) '=  - ( -  {tg}^{ - 2} x) \times (tgx) '=  \\  =  \frac{1}{ {tg}^{2}x }  \times  \frac{1}{ { \cos}^{2} x}  =  \frac{ { \cos }^{2}x }{ { \sin}^{2}  x }  \times  \frac{1}{ { \cos }^{2}x }  =  \frac{1}{ { \sin}^{2} x}

19

f'(x) =  -  \frac{14}{ { \sin }^{2} (14x)}  \\

20

f'(x) = 11 \cos(11x +  \frac{\pi}{3} )  \\

21

f'(x) = 4 \cos(x)  - ( {(x - 5 {x}^{8} )}^{ - 1} ) '= \\  =  4  \cos(x)  -  {(x - 5 {x}^{8}) }^{ - 2}   \times (1 - 40 {x}^{7} )' =  \\  = 4 \cos(x)  -  \frac{1 - 40 {x}^{7} }{ {(x - 5 {x}^{8}) }^{2} }

2

1

f'(x) = 36 {x}^{3}  - 6x + 0 = 36 {x}^{6}  - 6x \\ f'(5) = 36 \times 125 - 30 =  4470\\ f'(  - \frac{ 1}{3} ) =  -  \frac{36}{27}  + 2 =  -  \frac{4}{3}  + 2 =  \\  =  \frac{ - 4 + 6}{3}  =  \frac{2}{3}

Похожие вопросы