Найдите высоту треугольника ABC, опущенную на
сторону АС, если стороны квадратных клеток равны
√10
Приложения:

Ответы
Ответ дал:
0
В ΔАВС
АВ² = (√10)²+(2√10)²=50 ⇒ АВ=√50
ВС² = (√10)²+(2√10)²=50 ⇒ АВ=√50
АС² = ( (√10)²+(3√10)²=100 ⇒ АС=10
Высота проведенная к основанию АС делит ΔАВС на два равных прямоугольных треугольника с гипотенузой √50 и катетом 10:2=5
h² = (√50)² - (√25)²=25
h=5
АВ² = (√10)²+(2√10)²=50 ⇒ АВ=√50
ВС² = (√10)²+(2√10)²=50 ⇒ АВ=√50
АС² = ( (√10)²+(3√10)²=100 ⇒ АС=10
Высота проведенная к основанию АС делит ΔАВС на два равных прямоугольных треугольника с гипотенузой √50 и катетом 10:2=5
h² = (√50)² - (√25)²=25
h=5
Похожие вопросы
2 года назад
2 года назад
7 лет назад
10 лет назад
10 лет назад
10 лет назад