• Предмет: Геометрия
  • Автор: lisya99
  • Вопрос задан 10 лет назад

в четырехугольнике авсд длины диагоналей ас и вд равны 14 см и 18 см соответственно. найдите периметр четырехугольника efgh, вершинами которого являются середины сторон данного четырехугольника авсд

Ответы

Ответ дал: Милана296678
0
Диагонали делят параллелограмм на 4 треугольника, АВД, АВС, ВСД, АСД в каждом треугольнике проведенная линия соединяющая середины сторон = средней лини треугольника = 1/2 соответствующей диагонали, т.е стороны четырехугольника = 14/2=7,

18/2=9, 14/2=7, 18/2=9,следовательно периметр = 7+9+7+9=32
Ответ дал: Аноним
0
Четырехугольник АВСД, М-середина на В, К - на ВС, Н-на СД, Р -на АД
АС=18, ВД=22
треугольник АВС , МК-средняя линия=1/2АС=18/2=9
треугольникВСД, КН-средняя линия=1/2ВД=22/2=11
треугольник АСД, РН=1/2АС=9,
треугольникАВД, МР=1/2ВД=11
периметр МКНР=9+11+9+11=40
Ответ дал: fanat2
0
Середины сторон являются средними линиями треугольников с основаниями, равными диагоналям АС и ВД, т.е. две стороны будутпо14:2=7см и две по 18:2=9
периметр efgh будет равен 2·9+2·7= 32см
ответ 32 см
Похожие вопросы