Обчислити скалярний та векторний добутки векторів a̅ = (5; 0; −3), b̅ =
(6; 4; 11), а також мішаний добуток цих векторів з вектором с̅ = (1; 2; 3)
Ответы
Ответ дал:
2
Даны векторы a̅ = (5; 0; −3), b̅ = (6; 4; 11) и с̅ = (1; 2; 3).
1) Скалярное произведение векторов a̅ и b̅ равно:
a̅ и b̅ = 5*6+0*4+(-3)*11 = 30+0-33 = -3.
2) Векторное произведение векторов a̅ и b̅ равно:
i j k| i j
5 0 -3| 5 0
6 4 11| 6 4 = 0i - 18j + 20k -55j +12i - 0k = 12i - 73j + 20k.
Здесь применён метод Саррюса: добавляются 2 первых столбца, умножение по диагонали слева направо вниз и обратно справа налево вниз с минусом.
3) Смешанное произведение (a̅ х b̅ )*с =
12 - 73 + 20
1 2 3
12 -146 + 60 = -74.
Похожие вопросы
1 год назад
1 год назад
2 года назад
2 года назад
8 лет назад
8 лет назад
9 лет назад