Ответы
Ответ дал:
3
(a - 6)^2 - 2 (a - 6) (a - 5) + (a - 5)^2 = 1 ;
Заметим, что левую часть уравнения можно свернуть по формуле a^2 - 2ab + b^2 = (a - b)^2. Получим:
( (a - 6) - (a - 5) )^2 = 1 ;
(a - 6 - a + 5)^2 = 1 ;
1 = 1 .
Значит (a - 6)^2 - 2 (a - 6) (a - 5) + (a - 5)^2 = 1 верно при любых значениях a.
Ответ: a ∈ ℝ.
Похожие вопросы
1 год назад
2 года назад
2 года назад
9 лет назад