Ответы
Ответ дал:
1
Ответ:
(1/(e^(x²/³sin2/x)+㏑cosx)*((e^(x²/³sin2/x)*cos(x²/³sin2/x)*((3/2)*∛x*sin(2/x)+x³/²*cos(2/x)*-(2/x²))-tgx))
Пошаговое объяснение:
㏑(e^(x²/³sin2/x)+㏑cosx)
y'/y=(1/(e^(x²/³sin2/x)+㏑cosx)*((e^(x²/³sin2/x)*cos(x²/³sin2/x)*((3/2)*∛x*sin(2/x)+x³/²*cos(2/x)*-(2/x²))+(-sinx/cosx))=
(1/(e^(x²/³sin2/x)+㏑cosx)*((e^(x²/³sin2/x)*cos(x²/³sin2/x)*((3/2)*∛x*sin(2/x)+x³/²*cos(2/x)*-(2/x²))-tgx))
anastejsa778:
Спасибо
Похожие вопросы
1 год назад
1 год назад
2 года назад
2 года назад
8 лет назад
8 лет назад
9 лет назад