• Предмет: Алгебра
  • Автор: daniakucher292
  • Вопрос задан 1 год назад

Знайдіть загальний вигляд первісної функції
Даю 50 балів .

Приложения:

Ответы

Ответ дал: filuksistersp735lh
1

Ответ:

f(x) = 8 {x}^{7} -  \frac{3}{2 \sqrt{x} } \\ F(x) =  \int \: f(x)  dx =  \int(8 {x}^{7}  -  \frac{3}{2 \sqrt{x} } )dx =  \\  = 8 \times  \frac{ {x}^{8} }{8}  -  \frac{3}{2}  \times 2 \sqrt{x}  + C =  {x}^{8}  - 3 \sqrt{x}  + C

Объяснение:

 \int \frac{1}{ \sqrt{x} } dx =  \int {x}^{ -  \frac{1}{2} } dx =  \frac{ {x}^{ -  \frac{1}{2}   + 1} }{ -  \frac{1}{2} + 1 } +   C=  \frac{ {x}^{ \frac{1}{2} } }{ \frac{1}{2} }   + C= 2 \sqrt{x}  +C  \\


daniakucher292: Дякую)
Похожие вопросы