Ответы
Ответ дал:
1
Ответ:
Пошаговое объяснение:
ЗАДАНИЕ: найти производную функции y = sin(3x³)
Для нахождения производной сложной функции (y = f(g(x))) воспользуемся формулой f'(g(x)) = f'(x) * g'(x).
В этой формуле мы умножаем производную внешней функции на производную внутренней. В нашем случае внутрення функция g(x) = 3x³, а внешняя f(x) = sinx.
Некоторые формулы нахождения производных:
(sinx)' = cosx
Тогда получаем:
f'(x) = (sin(3x³))' = cos(3x³)
Похожие вопросы
1 год назад
1 год назад
1 год назад
2 года назад
2 года назад
8 лет назад
8 лет назад