• Предмет: Алгебра
  • Автор: kittoki
  • Вопрос задан 1 год назад

Розв'яжіть многочлен зі схемою горнера, х⁴+3х³-3х²-7х+6 . БУДЬ ЛАСОЧКА ДУЖЕ ПОТРІБНО! 50 БАЛІВ І КРАЩА ВІДПОВІТЬ​

Ответы

Ответ дал: 7x8
1

Ответ:

x^4+3x^3-3x^2-7x+6=(x+3)(x+2)(x-1)(x-1)

Объяснение:

W(x)=x^4+3x^3-3x^2-7x+6

W(1)=0

W(x)=Q_1(x)\cdot P_1(x)+R_1

P_1(x)=x-1

{\begin{array}{|r|r|r|r|r|r|}\cline{1-6}&a_4&a_3&a_2&a_1&a_0 \\ &1&3&-3&-7&6 \\ \cline{1-6} 1&&1&4&1&-6 \\ \cline{1-6} &1&4&1&-6&0 \\ &b_3&b_2&b_1&b_0&R_1\\ \cline{1-6} \end{array}}

W(x)=x^{4} + 3 x^{3} - 3x^{2} - 7 x + 6=(x^{3} + 4x^{2} + x - 6) (x - 1)

------------------------------------

Q_1=x^{3} + 4x^{2} + x - 6

Q_1(1)=0

Q_1(x)=Q_2(x)\cdot P_2(x)+R_2

P_2(x)=x-1

{\begin{array}{|r|r|r|r|r|}\cline{1-5}&a_3&a_2&a_1&a_0 \\ &1&4&1&-6 \\ \cline{1-5} 1&&1&5&6 \\ \cline{1-5} &1&5&6&0 \\ &b_2&b_1&b_0&R_2\\ \cline{1-5} \end{array}}

Q_1(x)=x^{3} + 4x^{2} + x - 6=(x^{2} + 5 x + 6)(x - 1)

------------------------------------

Q_2=x^2 + 5 x + 6

Q_2(-2)=0

Q_2(x)=Q_3(x)\cdot P_3(x)+R_3

P_3(x)=x+2

{\begin{array}{|r|r|r|r|}\cline{1-4} &a_2&a_1&a_0 \\ &1&5&6\\ \cline{1-4} -2&&-2&-6 \\ \cline{1-4} &1&3&0 \\&b_1&b_0&R_3\\ \cline{1-4} \end{array}}

Q_2(x)=x^{3} + 4x^{2} + x - 6=(x+3)(x+2)

x^4+3x^3-3x^2-7x+6=(x^{3} + 4x^{2} + x - 6) (x - 1)=(x^{2} + 5 x + 6)(x - 1)(x-1)=(x+3)(x+2)(x-1)(x-1)

Похожие вопросы